THE HUMAN NERVOUS SYSTEM

SECOND EDITION
Figure 17.12, Panel A: illustrates the mixing of neurons that stain with antiserum against ORX (brown) and with a digoxygenin-labeled probe for MCH mRNA (blue) in the perifornical region of a rat. Although the two types of neurons cluster closely with one another around the edge of the fornix, there is virtually no colocalization within individual neurons. Modified from Elias, C.F., Saper, C.B., Maratos-Flier, E., Tritos, N.A., Lee, C., Kelly, J., Tatro, J.B., Hoffman, G.E., Ollmann, M.M., Barsh, G.S., Sakurai, T., Yanagisawa, M., and Elmquist, J.K. (1998b). Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J. Comp. Neurol. 402, 442–459.
To Alexi and Benigna
Contents

I

EVOLUTION AND DEVELOPMENT

1. Brain Evolution
GEORG F. STRIEDTER

Historical Pattern of Vertebrate Brain Evolution 4
Developmental Mechanisms Underlying Brain Evolution 9
Evolution of Uniquely Human Brains 13
Conclusions 16
References 16

2. Embryonic Development of the Central Nervous System
FABiola MULLER AND RONAN O’RAHILLY

Developmental Stages and Ages 23
Areas with Special Inductive Influence 23
Neurulation 24
Neurocytogenesis 26
Development of the Neural Plate and Groove 28
The Brain from 4 to 6 Postfertilization Weeks 29
Some Individual Regions of the Brain 30
Ventricles, Choroid Plexuses, and Circumventricular Organs 43
The Cerebral Arteries 44
Measurements 44
Summary 45
References 46

3. Fetal Development of the Central Nervous System
JURGEN K. MAI AND KEN W. S. ASHWELL

Cerebral cortex 49
Deep Telencephalic Nuclei 57
Diencephalon 69
Midbrain 76
Cerebellum and Precerebellar Nuclei 78
Pons and Medulla 81
Spinal Cord 84
Acknowledgment 86
References 86

4. Development of the Peripheral Nervous System
KEN W. S. ASHWELL AND PHIL M. E. WAITE

Cranial Nerves 95
Somatic Peripheral Nervous System 102
Automatic and Enteric Nervous System 104
References 107

II

PERIPHERAL NERVOUS SYSTEM AND SPINAL CORD

5. Peripheral Motor System
SIMON C. GANDEVIA AND DAVID BURKE

Composition of Muscle Nerves 113
Muscle Receptors 115
Features of Muscle 122
Muscle Units and Motor Units 126
Acknowledgment 129
References 129
15. Lower Brain Stem Regulation of Visceral, Cardiovascular, and Respiratory Function

WILLIAM W. BLESSING

- Principles of Functional Neuroanatomical Organization in the Brain Stem 465
- Cardiovascular Function 466
- Respiratory Function 470
- Salivation, Swallowing, and Gastrointestinal Function, Nausea, and Vomiting 473
- Lower Brain Stem Regulation of Vomiting 475
- Lower Brain Stem Regulation of Hypothalamohypophyseal Secretion 475
- Lower Brain Stem Regulation of Pelvic Viscera 476
- References 477

16. Reticular Formation: Eye Movements, Gaze, and Blinks

JEAN A. BUTTNER-ENNEVER AND ANJA K.E. HORN

- Eye and Head Movements 480
- Eyelid and Blink 497
- References 503

17. Hypothalamus

CLIFFORD B. SAPER

- Cytoarchitecture of the Human Thalamus 514
- Fiber Connections of the Hypothalamus 524
- Functional Organization of the Hypothalamus 530
- References 542

18. Hypophysis

LUCIA STEFANEANU, GEORGE KONTOGEORGOS, KALMAN KOVACS, AND EVA HORVATH

- Anatomy of the Hypophysis 551
- Imaging of the Hypophysis 553
- Histology 554
- Ultrastructure 556
- References 561

19. Circumventricular Organs

MICHAEL J. MCKINLEY, IAIN J. CLARKE AND BRIAN J. OLDFIELD

- Subfornical Organ 563
- Vascular Organ of the Lamina Terminalis 569
- Median Eminence and Neurohypophysis 573
- Pineal Gland 577
- Subcommissural Organ 580
- Area Postrema 581
- Choroid Plexus 585
- References 586

20. Thalamus

GERARD PERCHERON

- General Considerations 592
- Diencephalon 595
- Thalamus 599
- Isothalamus. Constitution, Architecture, and Function 600
- Regio Superior 604
- Regio Medialis 608
- Regio Posterior 611
- Regio Basalis 614
- Regio Geniculata 619
- Regio Lateralis 620
- Subregio Lateralis Arcuata. Nucleus Ventralis Arcuatus. Varc 623
- Subregio Caudalis. Lemniscal Territory 624
- Subregio Lateralis Intermedia. Cerebellar Territory 626
- Subregio Lateralis Oralis. Pallidal Territory 630
- Subregio Lateralis Rostralis. Nigral Territory 635
- Allothalamus. Involucrum 647
- Regio Centralis 651
- Thalamic Stereotaxy 657
- References 660

21. The Basal Ganglia

SUZANNE N. HABER AND MARTHA JOHNSON GDOWSKI

- Topography, Cytoarchitecture, and Basic Circuitry 677
- Functional Basal Ganglia Connections 706
- Functional Considerations 715
- Acknowledgments 717
- References 719
22. Amygdala
JOSE S. DE OLMOS

Terminology 739
Description 741
Acknowledgments 857
References 860

23. Hippocampal Formation
RICARDO INSAUSTI AND DAVID G. AMARAL

Gross Anatomical Features 872
Cytoarchitectonic Organization of the Hippocampal Formation 880
Hippocampal Connectivity 891
Clinical Anatomy 901
Functional Considerations—The Emergence Of Neuroimaging 903
Acknowledgments 906
References 906

24. Cingulate Gyrus
BRENT A. VOGT, PATRICK R. HOF AND LESLIE J. VOGT

Surface Morphology 916
Regional Morphology: Four Fundamental Cingulate Subdivisions 919
Functional Correlations of the Four Cingulate Regions 920
Maps of Cingulate Areas 923
Cytology of Cingulate Areas 924
Comparison of the Brodmann Areas with Recent Modifications Thereof 943
Cortical Differentiation in Posterior Cingulate Gyrus 943
The Future for Cingulocentric Hypotheses and Research 946
Dedication and Acknowledgments 947
References 947

25. The Frontal Cortex
MICHAEL PETRIDES AND DEEPAK N. PANDYA

Sulcal and Gyral Morphology of the Frontal Cortex 951
Architectonic Organization 955
Cortico-cortical Connection Patterns 963
Acknowledgments 970
References 971

26. Motor Cortex
MASSIMO MATELLI, GIUSEPPE LUPPINO, STEFAN GEFER AND KARL ZILLES

Monkey Motor Cortex 975
Human Motor Cortex 985
Concluding Remarks 992
Acknowledgments 992
References 992

27. Architecture of the Human Cerebral Cortex
KARL ZILLES

Principal Subdivisions of the Cerebral Cortex 997
Quantitative Aspects of the Cerebral Cortex 998
Paleocortex 1000
Archicortex 1003
Isocortex 1007
Cortical Maps of the Human Brain: Past, Present, Future 1038
Acknowledgments 1042
References 1042

28. Somatosensory System
JON H. KAAS

Receptor Types and Afferent Pathways 1061
Relay Nuclei to Medulla and Upper Spinal Cord 1069
Somatosensory Regions of the Midbrain 1071
Somatosensory Thalamus 1071
Anterior Parietal Cortex 1074
Posterior Parietal Cortex 1080
Somatosensory Cortex of the Medial Wall: The Supplementary Sensory Area and Cingulate Cortex 1083
Somatosensory Cortex of the Lateral (Sylvian) Sulcus 1084
Summary 1085
References 1086

29. Trigeminal Sensory System
PHIL M. E. WAITE AND KEN W. S. ASHWELL

Receptors and Their Innervation 1094
Trigeminal Nerves, Ganglion, and Root 1098
Brainstem Trigeminal Sensory Nuclei 1101
Thalamic Sites for Trigeminal Somatic Sensations 1109
CONTENTS

30. Pain System
WILLIAM D. WILLIS, JR. AND KARIN N. WESTLUND
Nociceptors 1125
Pain Transmission Neurons and Pathways 1137
Descending Pain Modulatory Systems 1147
Brain Structures Involved in Pain Perception and Integration 1150
Summary and Conclusions 1157
References 1158

31. Gustatory System
THOMAS C. PRITCHARD AND RALPH NORGEN
Gustatory Apparatus and peripheral Innervation 1171
The Central Nervous System 1173
Further Gustatory Processing 1189
Summary 1191
Acknowledgments 1191
References 1191

32. Olfaction
JOSEPH L. PRICE
Olfactory Mucosa 1198
Olfactory Bulb 1200
Primary Olfactory Cortex 1201
Olfactory Projections Beyond the Primary Olfactory Cortex 1206
References 1209

33. Vestibular System
JEAN A. BÜTTNER-ENNEVER AND NICOLAAS M. GERRITS
Topography and Cytoarchitecture 1213
Connections 1221

34. Auditory System
JEAN K. MOORE AND FRED H. LINTHICUM, JR.
The Cochlea and Cochlear Nerve 1242
The Brain Stem Auditory System 1251
The Forebrain Auditory System 1264
The Descending Auditory System 1271
References 1274

35. Visual System
RAINER GOEBEL, LARS MUCKLI, AND DAE-SHIK KIM
Central Visual Pathway 1280
Primary Visual Cortex 1286
Extrastriate Cortex 1293
Acknowledgments 1301
References 1301

36. Emotional Motor System
GERT HOLSTE, LEONORA J. MOUTON, AND NICOLAAS M. GERRITS
Basic Motor System 1306
Somatic Motor System 1309
Emotional Motor System 1312
Concluding Remarks 1323
References 1324

37. Cerebral Vascular System
OSCAR U. SCREMIN
Anatomy of Cerebral Blood Vessels 1326
Anatomy of Spinal Cord Blood Vessels 1339
Vascular Innervation 1340
Mapping Cerebral Function with Blood Flow 1341
Global Responses of the Cerebral Circulation 1344
References 1345
Contributors

Numbers in parentheses indicate the pages on which the authors’ contributions begin.

David G. Amaral, (871), Center for Neuroscience, University of California, Davis, California, USA
Ken W. S. Ashwell, (49, 95, 1093), Department of Anatomy, School of Medical Sciences, The University of New South Wales, Sydney, Australia
William W. Blessing, (464), Departments of Physiology and Medicine, Centre for Neuroscience, Flinders University, Adelaide, Australia
Jean A. Büttner-Ennever, (479, 1212), Institute of Anatomy, Ludwig-Maximilian University Munich, Munich, Germany
David Burke, (113), College of Health Sciences, The University of Sydney, Sydney, Australia
Thomas Carlstedt, (250), PNI-Unit, The Royal National Orthopaedic Hospital, Stanmore, United Kingdom, and Karolinska Institutet, Stockholm, Sweden
Pascal Carrive, (393), Department of Anatomy, School of Medical Sciences, The University of New South Wales, Sydney, Australia
Iain J. Clarke, (562), Prince Henry’s Institute of Medical Research, Melbourne, Australia
Staffan Cullheim, (250), Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
Jose DeOlmos, (739), Instituto de Investigacion Medica “Mercedes y Martin Ferreyra”, Cordoba, Argentina
Richard L. M. Faull, (190), Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
Simon C. Gandevia, (113), Prince of Wales Medical Research Institute, The University of New South Wales, Sydney, Australia
Martha Johnson Gdowski, (676), Department of Neurobiology and Anatomy, University of Rochester School of Medicine, Rochester, New York, USA
Nicolaas M. Gerrits, (1212, 1306), Department of Anatomy, Erasmus University, Rotterdam, The Netherlands
Stefan Geyer, (973), C. and O. Vogt-Brain Research Institute, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
Ian Gibbins, (134), Department of Anatomy and Histology, Flinders University, Adelaide, Australia
Rainer Goebel, (1280), Department of Neurocognition, Faculty of Psychology, Universiteit Maastricht, Maastricht, The Netherlands
Gunnar Grant, (233), Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
Suzanne N. Haber, (676), Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York, USA
Glenda Halliday, (267, 449), Prince of Wales Medical Research Institute, The University of New South Wales, Sydney, Australia
Patrick R. Hof, (915), Fishberg Research Center for Neurobiology, Department of Geriatrics and Adult Development, Mount Sinai School of Medicine, New York, USA
Ger G. Holstege, (1306), Department of Anatomy and Embryology, Faculty of Medical Sciences, University of Groningen, Groningen, The Netherlands
Anja K. E. Horn, (479), Institute of Anatomy, Ludwig-Maximilian University Munich, Munich, Germany
Jean-Pierre Hornung, (424), Institut de Biologie Cellulaire et de Morphologie, University of Lausanne, Lausanne, Switzerland
Eva Horvath, (551), Department of Laboratory Medicine and Pathobiology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
Xu-Feng Huang, (267), Department of Biomedical Sciences, University of Wollongong, Wollongong, Australia
Ricardo Insauti, (871), Department of Health Sciences, School of Medicine, University of Castilla-La Mancha, Albacete, Spain
Jon H. Kaas, (1059), Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
Dae-Shik Kim, (1280), Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
George Kontogeorgos, (551), Department of Pathology, General Hospital of Athens, Athens, Greece
Yuri Koutcherov, (267), Prince of Wales Medical Research Institute, The University of New South Wales, Sydney, Australia
Kalmann Kovacs, (551), Department of Laboratory Medicine and Pathobiology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
Fred H. Linthicum, Jr., (1241), Department of Histo-pathology, House Ear Institute, Los Angeles, California, USA
Giuseppe Luppino, (973), Dipartimento di Neuroscienze, Sezione di Fisiologia, Università Di Parma, Parma, Italy
Jürgen K. Mai, (49), Institute of Neuropathology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
Massimo Matelli, (973), Dipartimento di Neuroscienze, Sezione di Fisiologia, Università Di Parma, Parma, Italy
Michael J. McKinley, (562), Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Victoria, Australia
Jean K. Moore, (1241), Department of Neuroanatomy, House Ear Institute, Los Angeles, California, USA
Michael M. Morgan, (393), Department of Psychology, Washington State University, Vancouver, Washington, USA
Leonora J. Mouton, (1306), Department of Anatomy and Embryology, Faculty of Medical Sciences, University of Groningen, Groningen, The Netherlands
Lars Muckli, (1280), Department of Neurophysiology, Max-Planck Institute of Brain Research, Frankfurt, Germany
Fabiola Müller, (22), University of California School of Medicine, Davis, California, USA
Ralph E. Norgren, (1171), Department of Neural and Behavioral Sciences, Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
Brian J. Oldfield, (562), Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Victoria, Australia
Ronan O’Rahilly, (22), University of California School of Medicine, Davis, California, USA
Deepak Pandya, (950), Departments of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA, and Harvard Neurological Unit, Beth Israel Hospital, Boston, Massachusetts, USA
George Paxinos, (267), Prince of Wales Medical Research Institute, The University of New South Wales, Sydney, Australia
Gerard Percheron, (592), Institut National de la Santé et de la Recherche Medicale, Paris, France
Michael Petrides, (950), Montreal Neurological Institute, and Department of Psychology, McGill University, Montreal, Quebec, Canada
Joseph L. Price, (1197), Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, USA
Thomas C. Pritchard, (1171), Department of Neural and Behavioral Sciences, Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
Mårten Risling, (250) Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden, and Department of Défence Medicine, Swedish Defence Research Agency (FÖD), Stockholm, Sweden
Clifford B. Saper, (513), Harvard Medical School, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
Jean Schoenen, (190, 233), Department of Neuroanatomy and Neurology, University of Liège, Liège, Belgium
Oscar U. Scremin, (1325), Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, California, USA
Lucia Stefaneanu, (551), Department of Laboratory Medicine and Pathobiology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
Georg F. Striedter, (3), Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California, USA
Brent A. Vogt, (915), Cingulum NeuroSciences Institute, Manlius, New York, USA, and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA

Lesley J. Vogt, (915), Cingulum NeuroSciences Institute, Manlius, New York, USA, and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA

Jan Voogd, (321), Department of Neuroscience, Erasmus University Rotterdam, Rotterdam, The Netherlands

Phil M. E. Waite, (95, 1093), Department of Anatomy, School of Medical Science, The University of New South Wales, Sydney, Australia

Karin N. Westlund, (1125), Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston, Texas, USA

William D. Willis, Jr., (1125), Department of Anatomy and Neurosciences, The University of Texas Medical Branch, Galveston, Texas, USA

Karl Zilles, (973, 997), Institute of Medicine, Research Center Jülich, and C. & O. Vogt-Institute of Brain Research, University of Düsseldorf, Düsseldorf, Germany
Neuroscience comprises increasingly diverse fields ranging from molecular genetics to neurophilosophy. The common thread between all these fields is the structure of the human nervous system. Knowledge on the structure, connections and function of the brain of experimental animals is readily available. On the other hand the structure of the human brain was studied by the classical anatomists and their work is difficult to retrieve. With the current intense interest in the structure of the human brain engendered particularly by imaging studies, groups of scientists familiar with the classical works, but who are also versed in modern neuroscience technologies, have commenced human brain studies.

The present book gives an authoritative account of the structure of the human brain tempered by functional considerations. The task of describing all parts of the nervous system in the context of modern hypotheses of structural and functional organization would be overwhelming for a single individual. We have, therefore, asked scientists with knowledge and affection for their research areas to contribute to this edited volume. We trust that the combined effort of contributors to The Human Nervous System 2e will do justice to the data and concepts available in our field while stimulating the readers’ brains, arousing curiosity and providing a framework for thinking.

George Paxinos and Jürgen K Mai
Sydney and Düsseldorf